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PROBLEM STATEMENT

Cassava is Africa’s most important tuber crop,

crucial for food security. However, low yield per

hectare remains a challenge. Traditional root

volume estimation methods are labor-intensive

and invasive, limiting large-scale analysis. A non-

invasive, automated solution is needed to

optimize yield, improve crop selection, and

enhance stress resilience.



WHY IS CASSAVA IMPORTANT TO AFRICA?

Africa produces over
50% of the world's
cassava; Nigeria
alone contributes

nearly 20% of global
output

Cassava contributes
to the livelihood of

more than 300 million
Africans and is the
number one crop in

Africa by total output

Cassava production is
especially significant in
countries like Nigeria,

Ghana, and the DRC, which
account for over 50% of the
global production increase

between 2000 and 2019

It provides over
50% of local food

intake in many
regions of africa

Source: The paper by Waidi Gbenro Adebayo on” Cassava Production in Africa” (2020)

Grows well in poor
soils and drought

conditions. Acts as
both a subsistence
and cash crop for

smallholder farmers.



Limitations of Traditional Methods

Roots must be uprooted
and cleaned to measure
volume manually (via
water displacement, 3D
scanning, or weighing).

This destroys the plant,
making it impossible to
monitor root growth over
time or track development
across stages.

Atanbori, J., Montoya-P, M. E., Selvaraj, M. G., French, A. P., & Pridmore, T. P. (2019). Convolutional neural net-
based cassava storage root counting using real and synthetic images. Frontiers in Plant Science, 10, 1516.

Source: The paper by Waidi Gbenro Adebayo on” Cassava Production in Africa”

They are destructive

Human error in cutting,
cleaning, or measuring
leads to inconsistent data.

Soil clumps or damage
during uprooting can skew
volume measurements.

Inconsistent and
error-prone

Requires manual digging,
washing, and measuring,
often taking hours per
plant.

Not feasible for large-
scale phenotyping,
breeding trials, or field
surveys.

Labor-intensive and
slow

On a field with thousands
of cassava plants, it’s
impractical to uproot and
measure each one.

Limits usage to small
samples, reducing
statistical robustness and
generalizability.

Not scalable

https://doi.org/10.3389/fpls.2019.01516


POTENTIAL
IMPACT OF
THE
SOLUTION

Empowers
Breeding and

Research
Programs

Improves
Decision-

Making for
Farmers

 Boosts
Cassava

Yield and
Productivity

Reduces
Environmen
tal Impact

Scalable for
National

and Global
Applications

Lays
Foundation for
Smart Farming

Tools

Enables farmers and
breeders to estimate root
volume without uprooting,

allowing for Early yield
prediction, Selection of

high-performing varieties
and Real-time growth

tracking

Speeds up genotype
selection by providing

accurate, scalable root
volume data and Helps

researchers test drought-
tolerant, disease-resistant,

or high-yield varieties

Farmers can monitor
growth non-destructively
and optimize harvest time

Supports precision
agriculture with data-

driven decisions

Eliminates the need for
destructive root

sampling, reducing:
Soil disturbance
Labor waste
Land overuse

Governments and NGOs
can use it in cassava

improvement programs

Can be adapted to other
root crops (e.g., yam, sweet

potato) in the future

Opens the door for
integration with:

Drones, GPR,
smartphone apps
Remote monitoring
systems
AI-based yield
forecasting dashboards



Gap

Despite high total output, Africa’s cassava yield

per hectare (avg. 8.9 tons/ha) is well below the

global average (11.3 tons/ha) and far below the

potential yield (up to 80 tons/ha)

Current cassava studies using machine learning

primarily focus on classification tasks like disease

detection or crop segmentation. However, no

existing solution accurately estimates cassava root

volume non-invasively. Traditional methods remain

manual and destructive. 



Analyzed cassava production data from 37 African countries
(1961–2020) using panel regression.

Found that 95.6% of output growth was due to land
expansion, while only 2% came from yield improvements.

Despite new high-yield, pest-resistant varieties, average yield
per hectare remains low (8.9 t/ha vs. potential of 80 t/ha).

Highlights an urgent need for sustainable intensification and
non-invasive, tech-based solutions to boost yield without
expanding farmland.

LITERATURE REVIEW 
Cassava Production in Africa: A Panel Analysis of the Drivers

and Trends by Waidi Gbenro Adebayo (2023)



Ground Penetrating Radar (GPR): Non-destructive
imaging technique that detects subsurface root
structures by measuring electromagnetic wave
reflections (Lantini et al., 2020; Liu et al., 2017).

GPR correlates well with root biomass but requires
sophisticated processing and ML interpretation
(Adebayo, 2023).

Other sensing methods include ultrasonic resonance
and multispectral imaging, mostly effective for
above-ground water content but limited for buried
roots (Fariñas et al., 2019).

LITERATURE REVIEW 

Emerging Technologies for Root
Phenotyping

Papers Referred :
1) Ground Penetrating Radar (GPR) Detects Fine Roots of Agricultural Crops in
the Field (2017)

2) Application of Ground Penetrating Radar for Mapping Tree Root System
Architecture and Mass Density of Street Trees (2020)

3) Instantaneous and Non-Destructive Relative Water Content Estimation from
Deep Learning Applied to Resonant Ultrasonic Spectra of Plant Leaves (2019)

ML models (Random Forest, SVM, CNNs) have been
successfully applied to predict above-ground
biomass and leaf water content from remote sensing
data (Wang et al., 2025; Nyalala et al., 2021).

Atanbori et al. (2019) applied CNNs to count cassava
storage roots using real and synthetic images,
improving phenotyping automation but focusing on
root count, not volume.

These ML applications highlight the potential but also
the gap in direct root volume estimation using
subsurface sensing.

Machine Learning in Plant Biomass
and Water Content Estimation

Papers Referred :
1) Estimating Maize Leaf Water Content Using Machine Learning with Diverse
Multispectral Image Features (2025)

2) Convolutional Neural Net-Based Cassava Storage Root Counting Using Real
and Synthetic Images (2019)

3) Instantaneous and Non-Destructive Relative Water Content Estimation from
Deep Learning Applied to Resonant Ultrasonic Spectra of Plant Leaves (2019)



Combines allometric variables (height, diameter, age)
with Random Forest and Gradient Boosting to predict
biomass.

Effective for forest trees with vertical root structure,
but unsuitable for cassava’s lateral, tuberous root
morphology.

No integration of imaging or subsurface data; limited
applicability to cassava root volume estimation.

Demonstrates potential of multivariate ML but
highlights need for subsurface imaging fusion.

LITERATURE REVIEW 

Model 1: Pinus Biomass Estimation Using
Ensemble Learning (Antúnez et al., 2025)

Predictive Modeling of Volume and Biomass in Pinus pseudostrobus
Using Machine Learning and Allometric Approaches (2024)

Uses UAV and ground-based multispectral imaging
with ML regression (SVM, RF) to estimate leaf water
content.

Achieves high accuracy but limited to above-ground
foliage, unable to penetrate soil to roots.

High equipment cost and soil signal attenuation limit
adoption for root water content monitoring in cassava

.
Illustrates how spectral imaging benefits crop water
estimation, but roots require different sensing
methods.

Model 2: Maize Leaf Water Content Estimation
Using Multispectral Data (Wang et al., 2025)

Estimating Maize Leaf Water Content Using Machine Learning with
Diverse Multispectral Image Features (2025)



Minirhizotron imaging: Uses transparent tubes
and cameras to observe root growth but it  is
labor-intensive (Adebayo, 2023).

3D Scanning (Laser, Photogrammetry): Effective
for biomass estimation of uprooted roots but
destructive and unsuitable for field-scale,
longitudinal studies.

MRI and X-ray CT: Provide high-resolution root
water content and volume data but are
expensive and impractical for field use.

None of these techniques combine non-invasive
field applicability with automated, high-
throughput analysis.

LITERATURE REVIEW 

Additional Existing Models & Techniques

Most models focus on above-ground traits or require
destructive sampling.

No existing ML model fully integrates GPR-based
subsurface sensing with image processing and
metadata fusion for cassava root volume estimation.

Soil heterogeneity, root morphology complexity, and
cost limit current methods.

Opportunity exists for a multimodal AI system
combining GPR radar, handcrafted and learned
features, and environmental data — tailored for
cassava.

Summary of Literature Gaps



OUR SOLUTION
CNN-based LSTM
model for root volume
prediction



Idea Taken: CNNs are effective at
processing plant root imagery
(real + synthetic).

How We Used It: Adopted a CNN
backbone to extract features from
GPR slices — inspired by their
success in root detection.

Our
Inspiration?

1) Use of ML for Root Traits
(Atanbori et al., 2019)

Idea Taken: No existing models
used GPR for cassava root volume.

How We Used It: Our model is
GPR-based, directly addressing the
non-invasive, subsurface
estimation gap highlighted across
all papers.

2)Subsurface Sensing Gap (All
literature + Adebayo, 2023)

Idea Taken: Ultrasonic and spectral
signals can estimate internal traits like
water content non-destructively.

How We Used It: Reinforced the
importance of preserving the plant and
using indirect signals (GPR) interpreted
by ML — a core value of our approach.

3) Fariñas et al. (2019) – Non-
destructive Sensing

Idea Taken: It Validated the use of
sequential patterns (spectral or
spatial).

How We Used It: Inspired our use of
LSTM to model root depth-wise
structure in GPR slices.

4) sequential patterns-
Wang et al., (2025)



OUR DATA
 GPR scan images of cassava roots.

corresponding labels

 Corresponding volume

measurements.



Data Preprocessing

For each sample, 21
grayscale slices per side

(L and R) are loaded.

Images are named like:
folder_L_001.png, ...,

folder_R_021.png.

Load Image Slices

If a file is missing or
unreadable, it's

replaced with a black
image (all zeros)

Handle Missing
or Corrupted Files

Convert to PIL image.

Resize to fixed size
(default: 128×128)

Convert to PyTorch
tensor.

Transformations

Stack 21 image slices
per side to form shape

(21, H, W).

Combine both sides into
final shape (2, 21, H, W).

Stacking Slices



2 views per root sample:
Left and Right
Each view has 21
grayscale image slices

2) Image
Preprocessing:
Resize all slices to 128×128
Stack slices to shape: (2, 21,
128, 128)

How does our
model work?

1) Input:

4) LSTM Sequence
Modeling:
LSTM processes sequence of
slice features
Captures depth-wise/root
structure patterns
Outputs final hidden state
(64-D) per view

3) CNN Feature
Extraction:
CNN processes each 2D slice
Outputs 32-dimensional
feature vector per slice

5) Feature Fusion:
Concatenate final LSTM
outputs from L and R
Combined feature
vector: (batch, 128)

6) Fully 
Connected Layers:
Dense layers process fused features
Predict root volume (scalar output)

7) Output:
Single predicted volume
value per sample



Challenges Faced

CNN  process each image
independently, but the

volume depends on the
sequence of slices.

The model wasn’t learning
the depth progression of the

root.

Lack of Sequence
Awareness

We weren’t sure how to
approach the problem

initially.
   

Most discussed
implementations were

using YOLO, which was
pre-trained so ruled out.

Lack of Clarity at the
Start

 Added an LSTM on top of
CNN features to model the

slice sequence.

This significantly improved
predictions and made

better use of the image
stack.

Using CNN + LSTM
(based on

suggestion)

Data Inference

The Data was challenging
to deal with in the sense of

visualization

Each image was split into
Left and Right of the root

and could have upto 7
roots in it



Performance Metrics

Validation RMSE: 1.374
Public Leaderboard RMSE: 1.075
Private Leaderboard RMSE: 1.385

What does this tell us?

Private RMSE ≈ Validation RMSE →
performs well on unseen data

Model can predict root volumes
within ±1.3 units of the true value

Root Mean Squared Error (RMSE)



Future work

Plaksha Context: Sugarcane is being
grown – possible use of GPR for non-
destructive root monitoring

Why It Could Work:
GPR has been used to detect fibrous
root systems (e.g., maize)
Could aid in non-invasive crop health
tracking or root growth analysis

Can This Be Deployed at Plaksha?
For SugarCane

 Need labeled GPR scans of
sugarcane with true root volume

Sugarcane root structures differ
from cassava; more diffused

*Requires GPR hardware, data
collection, and fine-tuning the
model

Challenges


