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PROBLEMN STATEMIENT

Cassava is Africa’s most important tuber crop,
crucial for food security. However, low yield per
hectare remains a challenge. Traditional root
volume estimation methods are labor-intensive
and invasive, limiting large-scale analysis. A non-
invasive, automated solution is needed to
optimize yield, improve crop selection, and
enhance stress resilience.




UWHY IS CASSAVA INMPORTANT TO AFRICA?

Africa produces over
50% of the world's

cassava; Nigeria
alone contributes
nearly 20% of global
output

Cassava contributes
to the livelihood of
more than 300 million
Africans and is the
number one crop in
Africa by total output

It provides over
50% of local food
intake in many
regions of africa

Cassava production is
especially significant in
countries like Nigeriq,
Ghanag, and the DRC, which
account for over 50% of the
global production increase
between 2000 and 2019

S

Grows well in poor
soils and drought
conditions. Acts as
both a subsistence
and cash crop for
smallholder farmers.



Limitations of Traditional NMethods

They are destructive Not scalable Labor-intensive and Inconsistent and
slow error-prone

e Roots must be uprooted
and cleaned to measure
volume manually (via
water displacement, 3D
scanning, or weighing).

« On a field with thousands Requires manual digging, « Human error in cufting,
of cassava plants, it's washing, and measuring, CIeGning., or megsuring
impractical to uproot and often taking hours per leads to inconsistent data.

measure each one. plant.
« Soil clumps or damage

Limits usage to small Noft feasible for large- during uprooting can skew
samples, reducing scale phenotyping, volume measurements.
statistical robustness and breeding trials, or field

This destroys the plant,
making it impossible to
monitor root growth over , -
time or track development generalizability. surveys.

across stages.

Atanbori, J., Montoya-P, M. E., Selvaraqj, M. G., French, A. P., & Pridmore, T. P. (2019). Convolutional neural net-
based cassava storage root counting using real and synthetic images. Frontiers in Plant Science, 10, 1516.
Source: The paper by Waidi Gbenro Adebayo on” Cassava Production in Africa”



https://doi.org/10.3389/fpls.2019.01516

Boosts

Cassava Empowers Improves
MEGERD! Breeding and Decision-
Productivity Research Making for

Programs Farmers

POTENTIAL

Enables farmers and
breeders to estimate root
volume without uprooting,
allowing for Early yield

Farmers can monitor
growth non-destructively
and optimize harvest time

Speeds up genotype
selection by providing
accurate, scalable root

prediction, Selection of

high-performing varieties

and Real-time growth
tracking

Reduces
Environmen
tal Impact

Eliminates the need for
destructive root
sampling, reducing:
¢ Soil disturbance

e Labor waste
e Land overuse

volume data and Helps
researchers test drought-
tolerant, disease-resistant,
or high-yield varieties

Scalable for
National

and Global
Applications

Governments and NGOs
can use it in cassava
improvement programs

Can be adapted to other
root crops (e.g., yam, sweet
potato) in the future

Supports precision
agriculture with data-
driven decisions

Lays
Foundation for
Smart Farming

Tools

Opens the door for
integration with:

e Drones, GPR,

smartphone apps

e Remote monitoring

systems

e Al-based yield

forecasting dashboards

IMPACT OF
THE
SOLUTION




Gap

Despite high total output, Africa’s cassava yield
per hectare (avg. 8.9 tons/ha) is well below the
global average (11.3 tons/ha) and far below the
potential yield (up to 80 tons/haq)

Current cassava studies using machine learning
primarily focus on classification tasks like disease
detection or crop segmentation. However, no
existing solution accurately estimates cassava root
volume non-invasively. Traditional methods remain
manual and destructive.




Figure 1: World and Regional Cassava Production in Tonnes 1961-2020
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LITERATURE REVIEW

Emerging Technologies for Root
Phenotyping

e Ground Penetrating Radar (GPR): Non-destructive
imaging technique that detects subsurface root
structures by measuring electromagnetic wave
reflections (Lantini et al., 2020; Liu et al., 2017).

 GPR correlates well with root biomass but requires
sophisticated processing and ML interpretation
(Adebayo, 2023).

e Other sensing methods include ultrasonic resonance
and multispectral imaging, mostly effective for
above-ground water content but limited for buried
roots (Farinas et al., 2019).

Papers Referred :
1) Ground Penetrating Radar (GPR) Detects Fine Roots of Agricultural Crops in
the Field (2017)

2) Application of Ground Penetrating Radar for Mapping Tree Root System
Architecture and Mass Density of Street Trees (2020)

3) Instantaneous and Non-Destructive Relative Water Content Estimation from
Deep Learning Applied to Resonant Ultrasonic Spectra of Plant Leaves (2019)

Machine Learning in Plant Biomass
and Water Content Estimation

e ML models (Random Forest, SVM, CNNs) have been
successfully applied to predict above-ground
biomass and leaf water content from remote sensing

data (Wang et al,, 2025; Nyalala et al., 2021).

o Atanboriet al. (2019) applied CNNs to count cassava
storage roots using real and synthetic images,
improving phenotyping automation but focusing on
root count, not volume.

e These ML applications highlight the potential but also
the gap in direct root volume estimation using
subsurface sensing.

Papers Referred:
1) Estimating Maize Leaf Water Content Using Machine Learning with Diverse
Multispectral Image Features (2025)

2) Convolutional Neural Net-Based Cassava Storage Root Counting Using Real
and Synthetic Images (2019)

3) Instantaneous and Non-Destructive Relative Water Content Estimation from
Deep Learning Applied to Resonant Ultrasonic Spectra of Plant Leaves (2019)



LITERATURE REVIEW

Model 1. Pinus Biomass Estimation Using Model 2: Maize Leaf Water Content Estimation
Ensemble Learning (Antunez et al., 2025) Using Multispectral Data (Wang et al., 2025)
« Combines allometric variables (height, diameter, age) e Uses UAV and ground-based multispectral imaging
with Random Forest and Gradient Boosting to predict with ML regression (SVM, RF) to estimate leaf water
biomass. content.
» Effective for forest trees with vertical root structure, « Achieves high accuracy but limited to above-ground
but unsuitable for cassava’s lateral, tuberous root foliage, unable to penetrate soil to roots.
morphology.

« High equipment cost and soil signal attenuation limit
« No intfegration of imaging or subsurface datq; limited adoption for root water content monitoring in cassava
applicability to cassava root volume estimation. :
e lllustrates how spectral imaging benefits crop water

« Demonstrates potential of multivariate ML but estimation, but roots require different sensing
highlights need for subsurface imaging fusion. methods.
Predictive Modeling of Volume and Biomass in Pinus pseudostrobus Estimating Maize Leaf Water Content Using Machine Learning with

Using Machine Learning and Allometric Approaches (2024) Diverse Multispectral Image Features (2025)



LITERATURE REVIEW

Additional Existing Models & Technigues summary of Literature Gaps

e Minirhizotron imaging: Uses transparent tubes
and cameras to observe root growth but it is
labor-intensive (Adebayo, 2023).

« Most models focus on above-ground traits or require
destructive sampling.

« No existing ML model fully integrates GPR-based
subsurface sensing with image processing and
metadata fusion for cassava root volume estimation.

e 3D Scanning (Laser, Photogrammetry): Effective
for biomass estimation of uprooted roots but
destructive and unsuitable for field-scale,

foghiuelnel Sueles: » Soil heterogeneity, root morphology complexity, and

e MRI and X-ray CT: Provide high-resolution root cost limit current methods.

water content and volume data but are

expensive and impractical for field use. o Opportunity exists for a multimodal Al system

combining GPR radar, handcrafted and learned
features, and environmental data — tailored for

« None of these techniqgues combine non-invasive
cassava.

field applicability with automated, high-
throughput analysis.



OUR SOLUTION

CNN-based LSTM
model for root volume
prediction




1) Use of NIL for Root Traits
(Atanbori et al., 2019)

e ldea Taken: CNNs are effective at
processing plant root imagery
(real + synthetic).

2)Subsurface Sensing Gap (All
literature - Adebayo, 2023)

e ldea Taken: No existing models
used GPR for cassava root volume.

e How We Used It: Our model is
GPR-based, directly addressing the

t o n, non-invasive, subsurface
u estimation gap highlighted across

all papers.

backlbone to extract features from

GPR slices — inspired by their Insp

e How We Used It: Adopted a CNN D
ira
success in root detection.

3) Farinas et al. (2019) - Non-

destructive Sensing ]
e e Ul -~ and ool 4) sequential patterns-
® €a |IaKen: rasonic anaga spectra wung Et U|., (2025)

sighals can estimate internal traits like

water content non-destructively. e Idea Taken: |t Validated the use of

sequential patterns (spectral or

« How We Used It: Reinforced the spatial).
importance of preserving the plant and
using indirect signals (GPR) interpreted
by ML — a core value of our approach.

e How We Used It: Inspired our use of
LSTM to model root depth-wise
structure in GPR slices.



OUR DATA

« GPR scanimages of cassava roots.

e corresponding labels

e Corresponding volume
medasurements.
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Load Image Slices

For each sample, 21
grayscale slices per side
(L and R) are loaded.

Images are named like:
folder_L_00T1.png, ...,
folder_R_021.png.

Handle Missing
or Corrupted Files

If a file is missing or
unreadable, it's
replaced with a black
image (all zeros)

Data Preprocessing

Transformations
Convert to PIL image.

Resize to fixed size
(default: 128x128)

Convert to PyTorch
tensor.

Stacking Slices

Stack 21 image slices
per side to form shape
(21, H, W).

Combine both sides into
final shape (2, 21, H, W).




1) Input:

e 2 vViews per root sample: m

Left and Right
e Each view has 21
grayscale image slices

7) Output:

e Single predicted volume
value per sample

2) iImage
Preprocessing:

e Resize all slices to 128x128
e Stack slices to shape: (2, 21,
128, 128)

How does our
model work?

A

6) Fully
Connected Layers.:

e Dense layers process fused features
e Predict root volume (scalar output)

5) Feature Fusion:
e Concatenate final LSTM

outputs from Land R
e Combined feature
vector: (batch, 128)

3) CNiIN Feature
EXxtraction:

CNN processes each 2D slice
Outputs 32-dimensional
feature vector per slice

4) LSTI1 Sequence
Nodeling:

LSTM processes sequence of
slice features

Captures depth-wise/root
structure patterns

Outputs final hidden state
(64-D) per view




Challenges Faced ) |

Data Inference

The Data was challenging
to deal with in the sense of
visualization

Each image was split into
Left and Right of the root
and could have upto 7
roofsin it

0o
o

Lack of Clarity at the
Start

We weren't sure how to
approach the problem
initially.

Most discussed
implementations were
using YOLO, which was
pre-trained so ruled out.

7 ‘
@ Q).

Lack of Sequence
Awareness

CNN process each image
independently, but the
volume depends on the
sequence of slices.

The model wasn't learning
the depth progression of the
roof.

‘ Using CIN + LSTIN
(based on
suggestion)

Added an LSTM on top of
CNN features to model the
slice sequence.

This significantly improved
predictions and made
better use of the image
stack.




Performance Metrics

Root Mean Squared Error (RMSE)

. Validation RMSE: 1.374
« Public Leaderboard RMSE: 1.075
e Private Leaderboard RMSE: 1.385

What does this tell us?

Private RMSE = Validation RMSE »
performs well on unseen data

Model can predict root volumes
within *1.3 units of the true value




Can This Be Deployed at Plaksha?
For SugarCane

Plaksha Context: Sugarcane is being
grown - possible use of GPR for non-
destructive root monitoring

Why It Could Work:

GPR has been used to detect fibrous
root systems (e.g., maize)

Could aid in non-invasive crop health
tracking or root growth analysis

Challenges

- Need labeled GPR scans of
sugarcane with true root volume

« Sugarcane root structures differ
from cassava:; more diffused

« *Requires GPR hardware, data
collection, and fine-tuning the
model



